Variable and Orbital-Dependent Spin-Orbit Field Orientations in an InSb Double Quantum Dot Characterized via Dispersive Gate Sensing

نویسندگان

چکیده

Utilizing dispersive gate sensing (DGS), we investigate the spin-orbit field (${\mathbf{B}}_{\mathrm{SO}}$) orientation in a many-electron double quantum dot (DQD) defined an $\mathrm{In}\mathrm{Sb}$ nanowire. While characterizing interdot tunnel couplings, find measured signal depends on electron-charge occupancy, as well amplitude and of external magnetic field. The is mostly insensitive to when DQD occupied by total odd number electrons. For even electrons, reduced finite aligns with effective ${\mathbf{B}}_{\mathrm{SO}}$ orientation. This fact enables identification orientations for different electron occupancies. varies drastically between charge transitions, generally neither perpendicular nanowire nor chip plane. Moreover, similar pairs transitions involving same valence orbital, such pairs. Our work demonstrates practicality DGS interactions systems, without requiring any current flow through device.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orbital and spin Kondo effects in a double quantum dot

– Motivated by recent experiments, in which the Kondo effect has been observed for the first time in a double quantum-dot structure, we study electron transport through a system consisting of two ultrasmall, capacitively-coupled dots with large level spacing and charging energy. Due to strong interdot Coulomb correlations, the Kondo effect has two possible sources, the spin and orbital degenera...

متن کامل

Pumped double quantum dot with spin-orbit coupling

We study driven by an external electric field quantum orbital and spin dynamics of electron in a one-dimensional double quantum dot with spin-orbit coupling. Two types of external perturbation are considered: a periodic field at the Zeeman frequency and a single half-period pulse. Spin-orbit coupling leads to a nontrivial evolution in the spin and orbital channels and to a strongly spin- depend...

متن کامل

Energy states and exchange energy of coupled double quantum dot in a magnetic field

The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...

متن کامل

Energy states and exchange energy of coupled double quantum dot in a magnetic field

The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...

متن کامل

Phonon modulation of the spin-orbit interaction as a spin relaxation mechanism in InSb quantum dots

We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. By studying suitable choices of magnetic field and lateral dot size, we determine regions where the spin relaxation rates can be practi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review applied

سال: 2023

ISSN: ['2331-7043', '2331-7019']

DOI: https://doi.org/10.1103/physrevapplied.19.014063